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ABSTRACT 

Optimizing the performance of geothermal systems 

while minimizing operational risks, such as injectivity 

decline and corrosion, is essential for the global 

adoption of geothermal energy. These operational 

challenges significantly impact the operational costs for 

geothermal plants. However, that can be minimized 

using real-time data and predictive models which 

enable in-time decision making for an optimized 

operational scenario and scheduled maintenance. 

Therefore, digital twin is a need for this purpose that 

provides a tool for proactive decision making for 

complex operational systems. Digital twin of 

geothermal assets provides real time monitoring, 

predictive analysis and operational optimization.  

This paper presents a digital twin framework for 

geothermal systems, focusing on two key challenges 

for long-term field and assets performance: injectivity 

and corrosion. Injectivity decline, caused by reservoir 

changes, scaling, and operational conditions, reduces 

operational efficiency, while incremental injectivity 

may occur due to factors like temperature effects. 

Corrosion impacts the integrity of facilities, leading to 

high maintenance costs and safety risks. By integrating 

sensors and real-time data, the digital twin enables 

monitoring and predictive maintenance, allowing for 

early detection of injectivity changes and corrosion, 

while optimizing system performance through 

operational scenario simulations.  

In addition to the architecture of the digital twin, case 

studies will be presented to demonstrate the 

effectiveness of the injectivity and corrosion 

applications. The developed digital twin framework 

was tested on and integrated into a geothermal plant in 

the Netherlands for direct-use heating application.  

The Injectivity monitoring application includes real-

time calculation of the injectivity index, which provides 

insights into changes in injectivity. Moreover, Hall and 

skin factor plots are presented to enables scenario 

analysis in addition to the real-time monitoring. As a 

result, a decline in injectivity, due to scaling issues, is 

reflected in a decreasing injectivity index, an increased 

skin factor and a deviation of the Hall derivative from 

the Hall plot showing a steeper positive slope. 

The corrosion monitoring application comprises real-

time data collection from operational parameters and 

corrosion probes, combined with semi-real-time data 

from fluid chemistry analysis, enabling prediction of 

corrosion rates in geothermal wells. These predictive 

models are validated through physical inspections 

using calliper logs and coupon samples, providing a 

feedback loop that enhances model accuracy. The 

corrosion rate predictions are then used to optimize 

maintenance schedules by focusing resources on high-

risk areas, adjust the frequency of logging activities, 

and facilitate proactive interventions, helping to 

prevent costly downtime and ensure integrity of 

geothermal well system. 

1. INTRODUCTION  

Geothermal energy is recognized globally as a critical 

resource for sustainable heating and power generation, 

due to its reliability and minimal environmental impact. 

However, geothermal operations often face challenges 

such as declining injectivity, corrosion, scaling and 

equipment degradation. Among these challenges, 

injectivity decline and corrosion are specially important 

because they significantly impact long-term 

performance, increase operational cost and create 

safety risks. 

Injectivity decline in geothermal wells occurs due to 

various reasons, including reservoir changes, scaling 

formation, and operational conditions. Such declines 

reduce the effectiveness of fluid injection and overall 

plant efficiency. On the other hand, corrosion affects 
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geothermal facility integrity, causing expensive 

maintenance needs and potential environmental and 

safety hazards. Both issues lead to increased downtime 

and operational costs, making it crucial to manage these 

problems proactively. 

Recent developments in digital twin technology 

provide effective tools to tackle these operational 

challenges. A digital twin is a dynamic virtual 

representation of a physical facility built using real-

time data. This virtual system allows for monitoring, 

predictive analysis, and optimized decision-making. 

Operators can proactively address injectivity and 

corrosion issues before they cause significant damage, 

therefore improving reliability and reducing costs 

(Mahmoud et al., 2023; Siratovich et al., 2022). 

Previous studies have demonstrated the benefits of 

digital twins in geothermal applications. For instance, 

digital twins in geothermal steamfields increased 

annual energy production by 2–5% without additional 

infrastructure (Siratovich et al., 2022). The other study, 

(Mahmoud et al., 2023), found that applying digital 

twins improved the performance of ground heat 

exchangers. Digital twin technology, combined with 

machine learning and artificial intelligence, helps 

operators predict system behavior, understand complex 

interactions, and optimize maintenance schedules and 

operational scenarios (Buster et al., 2021). Moreover, 

open-source frameworks like GOOML have further 

increased the accessibility of digital twins for 

geothermal applications (Buster et al., 2021; Siratovich 

et al., 2022). Chityori et al. (Chityori et al., 2024) 

integrate a digital twin with augmented reality to 

simulate geofluid behavior for improved silica scaling 

control. Such advancements show clear potential for 

increased efficiency and reliability in geothermal 

energy production. An example of the digital twin 

development for geothermal heating applications is 

introduced in the literature (Shoeibi Omrani et al., 

2024). 

This paper presents a digital twin framework 

specifically developed to address the operational 

challenges such as injectivity decline and corrosion 

issues in geothermal systems. The proposed approach 

integrates standardized data management, multi-

objective process control, real-time monitoring of 

injectivity and corrosion, predictive modeling, and 

scenario analysis for optimized operational decisions. 

This digital twin framework enables early detection of 

injectivity changes and corrosion risks, significantly 

reducing downtime and improving system reliability. 

The effectiveness of the digital twin is demonstrated 

through practical case studies at a geothermal plant in 

the Netherlands. The injectivity monitoring application 

includes real-time calculation of injectivity index and 

uses Hall plots and skin factor analysis to identify and 

predict injectivity issues. Furthermore, the corrosion 

monitoring application involves integrating real-time 

sensor data and fluid analysis for corrosion prediction 

and maintenance optimization.  

A key contribution of this work is the application of 

digital twin technology to the operational challenges in 

the geothermal industry, improving decision-making, 

reducing costs, and enhancing the operational 

efficiency of geothermal plants. 

2. METHODOLOGY 

This paper focuses on developing and implementing a 

digital twin technology framework for monitoring and 

optimizing injectivity and corrosion and automating 

multi-objective process control and reporting in 

geothermal systems. The developed solution integrates 

standardized data management, real-time data 

monitoring, and advanced modeling techniques, with a 

focus on open-source tools to ensure accessibility and 

adaptability. A set of models (mechanistic or data-

driven) representing the equipment (e.g., wells, pumps, 

filters, heat exchangers) and processes (e.g., corrosion, 

scaling, erosion) within geothermal systems is 

incorporated into the digital twin technology, providing 

a comprehensive and integrated approach for 

monitoring and optimizing geothermal plants 

(Octaviano et al., 2022). 

2.1 Architecture and framework 

The digital twin architecture used in this paper, Figure 

1, is structured into multiple interconnected layers 

designed for real-time monitoring, predictive analysis, 

and optimization. The architecture emphasizes 

simplicity, accessibility, scalability, and flexibility. It 

uses open-source programming languages and tools, 

making it easily accessible and adaptable. 

The digital twin consists of four primary layers: 

• Frontend Layer: Provides an easy-to-use 

graphical interface for project setup, real-time 

data visualization, and performing calculations 

via different applications. This layer uses HTML, 

CSS (Bootstrap), and JavaScript (React). 

• Backend Layer: Connects all layers, performs 

calculations, and handles requests from the 

frontend. Developed using Python. 

• Workflow Manager Layer: Organizes and 

schedules calculations at regular intervals to keep 

data and analysis continuously updated, managed 

using the open-source software Celery. 

• Database Layer: Stores sensor data, calculated 

results, and user account details securely. The 

system supports databases like MySQL, 

InfluxDB, Redis, and MongoDB, allowing easy 

switching based on specific user needs. 

The developed digital twin framework can run either 

locally at the geothermal site or remotely on cloud 

platforms such as Microsoft Azure, allowing multiple 

users access from various locations. 
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Figure 1: Proposed architecture for the open-source digital twin framework of geothermal assets. 

 

2.2 Data management and model integration 

Efficient handling of large amounts of real-time data is 

crucial for the performance of digital twins. Real-time 

data collected from sensors at the geothermal plant are 

integrated into external databases and then 

continuously retrieved for modeling and analysis. 

Calculations are regularly performed, and results are 

stored securely in local databases for analysis and 

decision-making purposes. User access to the data and 

projects is secured via username and password 

authentication. 

Seamless integration of the models into the data 

infrastructure ensures accuracy and reliability. The 

workflow manager ensures that real-time and historical 

data needed by the models is updated continuously and 

allows for consistent and accurate results for improved 

operational decision-making. 

2.3 Model and application development 

2.3.1 Injectivity monitoring 

Injectivity monitoring is necessary for maintaining 

optimal performance and sustainability of geothermal 

reservoirs. Effective monitoring and diagnostic tools 

help operators to identify and address injectivity issues 

proactively. The developed digital twin framework 

integrates three main techniques for injectivity 

monitoring: the injectivity index (II), Hall plot analysis 

and skin factor analysis.  

Injectivity Index (II) 

The injectivity index provides an immediate measure of 

injection well performance. It is calculated using the 

ratio of the injection rate to the pressure difference 

between the wellbore and reservoir pressure, equation 

1 (Arnold, 2021). Real-time monitoring of injectivity 

index helps operators to identify performance declines 

or reservoir damage and allows for a quick response to 

address issues like scaling or plugging (Izgec & Kabir, 

2007). 

𝐼𝐼 =
𝑘ℎ

141.2 𝜇𝐵 (𝑙𝑛 (
𝑟𝑟𝑒𝑠 
𝑟𝑤

) + 𝑠)
=

𝑄

𝑃𝑏ℎ − 𝑃𝑟𝑒𝑠
                     [1] 

Hall plot analysis 

The Hall plot analysis is a powerful diagnostic tool for 

evaluating injection well performance and reservoir 

conditions. It plots cumulative injection pressure 

multiplied by injection time versus cumulative injected 

fluid volume. Hall plots can effectively indicate the 

cause of injectivity changes, distinguishing between 

reservoir effects and well completion issues (Silin, 

Holtzman, Patzek, Brink, et al., 2005). Moreover, 

incorporating Hall plot derivatives (rate of changes) to 

Hall integral (cumulative rates) provides better 

sensitivity, detecting subtle changes in reservoir 

conditions or near-wellbore issues like scaling or 

plugging (Silin, Holtzman, Patzek, & Brink, 2005). 

Within the developed digital twin, Hall plots and 

derivatives are generated from real-time data for a 

selected time period, allowing proactive management 

of injectivity issues.  

Injection rate calculation (Izgec & Kabir, 2007):  

𝑄 =
𝑘ℎ(𝑝𝑏ℎ − 𝑝𝑟𝑒𝑠)

𝜇 (𝑙𝑛 (
𝑟𝑟𝑒𝑠 
𝑟𝑤

) + 𝑠)
                                               [2] 

Modified Hall Integral (Izgec & Kabir, 2007): 

∫ (𝑝𝑏ℎ −  𝑝𝑟𝑒𝑠) 𝑑𝑡
𝑡

0

 =  
Σ 𝑄

𝑐
,      𝑐 =

𝑘ℎ

𝜇 (𝑙𝑛 (
𝑟𝑒 
𝑟𝑤

) + 𝑠)
       [3] 
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Hall Derivative (Izgec & Kabir, 2007): 

𝐷𝐻𝐼 =
𝑑 ∫(𝑝𝑤𝑓 −  𝑝𝑟𝑒𝑠)𝑑𝑡

𝑑 𝑙𝑛(Σ 𝑄)
                                                      [4] 

Skin Factor analysis 

Skin factor analysis quantifies formation damage or 

improvement around the wellbore area, which 

significantly influences injectivity. Positive skin factors 

indicate reduced injectivity due to issues like scaling or 

plugging, while negative values suggest improved 

permeability or stimulation. Combined with injectivity 

index and Hall plot analyses, real-time skin factor 

monitoring offers powerful diagnostic capabilities to 

manage geothermal reservoir conditions (Akin, 2019; 

Arnold, 2021; Mihcakan et al., 2005). The digital twin 

integrates skin factor analyses in real-time for a 

selected time period to provide critical information for 

operators to make proactive intervention decisions. 

Skin pressure drop (Arnold, 2021): 

Δ𝑃𝑠𝑘𝑖𝑛 =
𝑄 𝜇 𝑠

2𝜋𝑘ℎ
                                                                           [5] 

2.3.2 Corrosion monitoring 

Corrosion is a relevant threat for the integrity of 

geothermal wells.  The most relevant types of corrosion 

in Dutch geothermal wells are general or uniform 

corrosion (including galvanic), localised corrosion, 

erosion corrosion and environmentally induced 

cracking (Veldkamp, 2015). Carbon dioxide is the most 

important oxidizing element for the Dutch doublets.  

Corrosion monitoring is essential for ensuring the long-

term integrity and performance of geothermal well 

infrastructure. Accurate and continuous monitoring 

enables operators to identify corrosion trends, evaluate 

mitigation effectiveness, and prevent potential failures 

before they escalate.  

To support proactive decision-making, corrosion 

monitoring systems should combine accurate data 

sources with practical analysis methods and prediction 

of future corrosion rates. This will also allow to 

optimize frequency and budget spent on well logging 

operations. 

In this approach, the Well Integrity Management 

System (WIMS) toolbox plays a key role. As shown in  

Figure 2, the toolbox gathers data from multiple sources, 

such as configuration, monitoring, and surveillance, 

and calculated databases. The data is filtered and 

checked for quality before being used for well integrity 

monitoring. This allows the system to provide a more 

reliable and efficient way to predict and manage the 

risks such as corrosion and erosion.  

 

Figure 2: Flowchart illustrating the Well Integrity Management System toolbax that collects and processes data for well 

integrity monitoring  

Corrosion prediction models have been developed 

mainly by the oil and gas industry for several decades. 

As most models were developed for the oil and gas 

industry, where oil or gas is the dominant phase, their 

applicability to geothermal is limited, and the results 

always uncertain. (Veldkamp, 2015). The approach 

developed here is to improve the reliability of the 

outcome of a corrosion prediction model by calibrating 

the model to align with measured data in particular 

wells. This incorporates direct corrosion probing 

(caliper and coupon measurements), real-time 

production data feed into a physics-based data-driven 

corrosion model, and systematic segment-by-segment 

calibration using historical measurements to align 

predictions with observed behavior. The result is a 

comprehensive and dynamic method for assessing 

corrosion conditions within the well environment. 
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Direct probing 

Diagnostic tools are essential for quantifying in-situ 

corrosion rates in geothermal well systems. Downhole 

measurements are taken in regular intervals in wells to 

assess the condition of the tubulars. Typically, Multi-

finger Caliper measurements, acoustic measurements 

and/or magnetic measurements are used to diagnose the 

tubular wall thickness over the length of a well. 

Downhole logging is typically performed prior to the 

commencement of production operations to establish a 

baseline of the wellbore’s internal geometry. This 

baseline is relevant for identifying deviations over time 

that signify general or localized corrosion. High-

resolution inner diameter or wall thickness data, when 

compared across operational intervals, enables accurate 

quantification of wall thickness reduction and early 

detection of structural anomalies. In parallel, corrosion 

coupons are installed in some geothermal systems in a 

dedicated side-stream loop, to replicate and downhole 

material exposure conditions, allowing more frequent 

corrosion rate assessment. The integration of measured 

downhole and coupon data provides a robust, field-

validated approach to corrosion monitoring. It supports 

predictive modeling, the calibration of corrosion rate 

models and optimization of logging frequency — 

thereby improving asset integrity and reducing 

operational risk.  

Downhole measurement logs are processed by 

extracting diameter or wall thickness measurements 

along each joint in the well and computing key statistics 

per tubular joint. Reason to calculate corrosion rate per 

joint is driven by practical considerations. Minor 

differences in actual depth vs indicated logging depth 

frequently occur due to wireline stretch or stick-slip 

motional behaviour of the measurement tool, making 

direct comparison of individual corrosion features 

problematic. Individual joints can however typically be 

identified in logs via distinct changes in diameter or via 

Casing Collar Locator information. 

With multi-finger caliper logs, opposing caliper 

fingers,—mean, max, and min internal diameters—

within each joint's depth interval are compared to the 

nominal casing dimensions or previous measurements 

to quantify wall loss and penetration. 

Corrosion rate (CR) is then calculated in two ways: 

• If only one log is available, the measured 

diameters are compared to the nominal ID. As 

the ID of new tubulars may be up to 12,5% 

larger than nominal, this may exaggerate 

corrosion rate. 

• If multiple logs exist, the mean IDs of each log 

are compared chronologically. The difference 

in diameter is divided by the time between 

logs to give the corrosion rate in mm/year. 

Physics-based Data-driven Corrosion model  

Indirect corrosion monitoring in geothermal wells 

utilizes physics-based data-driven approach to estimate 

corrosion rates from operational data, offering a 

continuous, non-intrusive alternative to physical 

inspection methods. The core of this approach is the 

segmentation of well operation into intervals—

typically from the installation date to the first caliper 

log, and between subsequent logs. Within each interval, 

time-series data such as flow rate, pressure, and 

temperature are filtered and coarsened using change-

point detection algorithm (PELT). This coarsening 

process segments the data into periods where 

operational parameters remain relatively stable, 

ensuring that corrosion calculations reflect sustained 

conditions rather than short-term fluctuations as well as 

optimize modelling computational efficiency. The 

filtered and coarsened data are then fed into a corrosion 

modelling framework, which includes a Vertical Lift 

Performance (VLP) model for simulating downhole 

conditions, CO2 partial pressure and the DLD (de 

Waard, Lotz, Dugstad, 1995) models for corrosion rate 

prediction, however different corrosion models can be 

coupled with the proposed framework. 

The DLD model was selected for this study based on 

the availability of the input parameter data. This model 

evaluates corrosion as a combination of reaction-

controlled and mass transfer-controlled mechanisms. 

Reaction-controlled corrosion is governed by CO₂ 

fugacity and temperature, while mass transfer-

controlled corrosion accounts for flow-induced effects 

using pipe geometry and fluid velocity. A scaling 

factor, dependent on system conditions, adjusts the 

result for potential scaling effects. The corrosion rate 

output is computed in mm/year for each joint over the 

interval and updated sequentially. This method 

provides a joint-by-joint corrosion estimate that 

evolves with operational conditions, making it ideal for 

predictive risk assessments and integrity management 

whilst direct downhole measurements are sparse. 

Calibration 

To ensure that the corrosion model accurately reflects 

real corrosion patterns observed in the well, a 

systematic calibration process is applied. This step is 

critical to align the output of the physics-based, data-

driven corrosion model with measured corrosion rates 

derived from caliper logs. The calibration is performed 

on a joint-by-joint and interval-by-interval basis, 

enhancing spatial and temporal resolution across the 

entire wellbore. 

Within each defined interval—bounded by successive 

caliper log dates—the model’s predictions are 

compared to observed corrosion rates. The discrepancy 

between measured and modeled values is minimized by 

optimizing key DLD model parameters, such as 

reaction kinetics and flow dependent coefficients. To 

improve numerical stability and convergence, 

parameters are normalized and optimized using 

constrained solvers like SLSQP or COBYLA. These 

solvers iteratively adjust the parameter set to minimize 

the sum of squared errors (SSE) between predicted and 

observed corrosion at each joint. 
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The coarsened operational data, which already reflects 

stable flow, pressure, and temperature conditions, 

ensures that the calibration focuses on meaningful long-

term trends rather than short-term fluctuations. Once 

optimized, the calibrated model provides more reliable 

predictions of future corrosion behavior under evolving 

well conditions. The calibration is inherently 

conservative, prioritizing the worst-case (maximum) 

corrosion scenario at each joint to ensure the model 

remains on the safe side of operational risk. 

The result is a calibrated corrosion model tailored to the 

specific well environment, capable of producing more 

accurate predictions under dynamic flow and thermal 

regimes. This enhances the model’s value in integrity 

management, supporting optimized inspection 

intervals, chemical treatment planning, and long-term 

risk mitigation strategies.. 

Following optimization, the calibrated model is 

integrated into a real-time corrosion monitoring system. 

It continuously processes live production data to 

provide updated corrosion rate predictions across all 

joints. This enables operators to track evolving integrity 

conditions without the need for immediate physical 

inspection. It also allows operators to forecast the 

effects of changes in operating conditions on corrosion 

and assess future integrity of the tubulars in these cases. 

Recommendations 

To confirm a well’s integrity and validate ongoing 

predictions, a new downhole log will be acquired from 

time to time. If the measured corrosion profile aligns 

closely with the model’s forecast—within an 

acceptable error margin— and the remaining wall 

thickness is sufficient, scheduling the next logging 

campaign can be optimized to a moment where the 

local wall thickness approaches the minimum value, 

considering an appropriate safety factor to account for 

uncertainties and response time for a well repair. This 

approach allows operators to shift from calendar-based 

to condition-based inspection scheduling, reducing 

unnecessary logging costs while maintaining 

confidence in well integrity. 

Planned future developments include indicating areas 

in wells where prolonged high erosion conditions have 

occurred. This may help in assessing if erosion-

corrosion of high-grade alloy steels (e.g. 13 Chrome) 

and erosion of corrosion barriers such as internal epoxy 

coating or GRE lining play a role of importance. 

3. RESULTS 

3.1 Injectivity monitoring 

The injectivity monitoring method applied in this study 

uses three primary tools: the injectivity index (II), Hall 

plot analysis, and skin factor analysis. These methods 

were tested using data from geothermal operations to 

evaluate injectivity performance and identify potential 

issues. Two distinct operational periods were selected 

to clearly demonstrate the capability of the digital twin. 

The first scenario represents a period (January-March) 

experiencing injectivity issues due to plugging or 

scaling, while the second scenario represents stable 

operational conditions.  

3.1.1 Injectivity decline due to plugging or scaling 

In the first scenario (Figure 3, January-March), the 

injectivity index showed a notable decline of 

approximately 22%. This decline was also seen in the 

Hall plot, where the Hall derivative separated clearly 

from the Hall integral curve, indicating reduced 

injectivity. That could cause by scaling or plugging. 

Moreover, the skin factor analysis confirmed these 

observations, showing increased values consistent with 

decreased injectivity. Such injectivity decline could 

result from changes in temperature, scaling buildup, or 

mechanical damage. 

The developed digital twins provide real-time 

monitoring capabilities that allow operators to detect 

injectivity problems early. As soon as injectivity 

decline is observed, operators can take corrective 

actions such as adjusting injection pressures and 

temperatures or applying chemical treatments to 

mitigate scaling. 
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Figure 3: Injectivity monitoring during injectivity decline (Scenario 1). Injectivity index (top), Hall plot (middle), and skin 

factor (bottom) clearly show declining injectivity conditions due to plugging or scaling. 

 

3.1.2 Stable injectivity conditions 

In the second scenario, Figure 4, representing stable 

conditions, the injectivity index remained mostly 

constant, fluctuating by less than 7%. This stable 

injectivity was confirmed by the Hall plot analysis, 

where the integral and derivative closely matched, 

indicating no significant injectivity changes or 

reservoir issues. The skin factor remained stable, 

further confirming normal operational conditions 

without notable injectivity improvement or decline. 

These results clearly demonstrate the value of real-time 

injectivity monitoring enabled by the developed digital 

twin framework. Injectivity changes can be caused by 

various operational factors, such as temperature 

variations, fluid composition changes, and injection 

pressures. By monitoring injectivity in real-time, 

operators can quickly detect deviations from normal 

conditions and proactively address emerging problems. 

This will significantly reduce operational risks, 

minimize downtime, and enhance overall reservoir 

management. 
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Figure 4: Injectivity monitoring during stable conditions (Scenario 2). Injectivity index (top), Hall plot (middle), 

and skin factor (bottom) demonstrate stability in injectivity with no significant changes.   

3.2 Corrosion monitoring 

This study presents an integrated approach to corrosion 

assessment combining caliper log processing, model 

calibration, and real-time corrosion monitoring. The 

methodology is designed to deliver accurate, joint-

specific corrosion rates, supporting both historical 

evaluation and forward-looking integrity management 

in geothermal wells. Given workflow was tested on 

synthetic dataset consisting of a 3-month production 

period and arbitrary logging data presented below. 

3.2.1 Log processing 

The processed caliper logs (Figure 5) provide joint-by-

joint assessment of casing condition, by calculating key 

metrics such as maximum penetration, wall loss, and 

internal diameter variations. These values are derived 

from opposing finger measurements and compared to 

nominal casing dimensions. The results are used to 

highlight areas of increased metal loss, enabling 

identification of high-risk zones and supporting 

corrosion model calibration and integrity management. 

3.2.2 Calibration 

The plot shown in Figure 6 illustrates the effectiveness 

of model calibration by comparing measured, un-

calibrated, and calibrated corrosion rates along the 

wellbore, indexed by joint number. 

The blue line represents the measured corrosion rate, 

derived from caliper logs between the date of the 

baseline measurement and 2 months after this date. The 

orange line shows the un-calibrated model output, 

which significantly underestimates corrosion across all 

joints, remaining nearly flat and failing to capture 

localized variations. In contrast, the green line, 

representing the calibrated model, closely follows the 

measured data, accurately reflecting the spatial 

variability and magnitude of corrosion along the casing. 
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Figure 5. Summarized processed caliper log data 

 

Figure 6 Corrosion rate per joint for a defined “training” interval between nominal/baseline and latest log date

3.2.3 Real-life monitoring  

The next phase of the corrosion assessment framework 

is designed to enable real-time monitoring by 

integrating the calibrated model with live production 

data, including flow rate, pressure, and temperature. 

Although real-time deployment has not yet been carried 

out in this study, the system is fully equipped to support 

continuous corrosion rate estimation on a joint-by-joint 

basis. Once operational, the model's predictions can be 

validated against future caliper logs to assess its 

accuracy. If the predicted corrosion rates fall within an 

acceptable range of the measured values and remaining 

wall thickness is sufficient, including a safety factor, 

inspection intervals can be safely extended. This 

approach lays the groundwork for transitioning from 

traditional, time-based logging schedules to risk-based, 

condition-driven strategies, improving both inspection 

efficiency and long-term well integrity management. 

4. CONCLUSIONS 

The digital twin framework presented in this study 

provides effective real-time monitoring, predictive 

analysis, and proactive decision-making tools 

specifically for injectivity and corrosion challenges. 

Key findings from this study demonstrate that real-time 

injectivity monitoring effectively detects performance 

declines in geothermal wells, enabling early 

identification of operational issues such as scaling or 

plugging. For instance, the digital twin successfully 

identified an injectivity index decline of approximately 

22% during the operational period tested, allowing for 

timely interventions to mitigate potential impacts on 

geothermal system performance. On the other hand, 

stable injectivity conditions were clearly distinguished, 

highlighting the effectiveness of digital twin in 

differentiating normal operations from problematic 

scenarios. 

The corrosion monitoring framework developed in this 

study complements real-time injectivity analysis by 

providing a robust method for tracking wellbore 

integrity on a joint-by-joint basis. Through the 

integration of caliper-derived measurements, physics-

based modeling, and parameter optimization, the 

system delivers high-resolution corrosion rate 

predictions. Although the real-time application is yet to 

be validated with live field data, the framework is fully 

designed to support continuous monitoring. Once 
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operational data are available, model predictions will 

be compared with follow-up caliper logs to assess 

accuracy and reliability. This will enable a shift toward 

condition-based logging strategies, improving 

inspection efficiency while maintaining well integrity. 

Overall, this integrated approach holds strong potential 

for enhancing geothermal well surveillance and will be 

further validated through future field deployments. 

Early detection of injectivity and corrosion issues 

significantly reduces operational risks, allowing 

operators to proactively manage reservoir conditions, 

minimize downtime, and optimize maintenance 

scheduling, thus reducing operational costs. 

A significant advantage of this study is the use of a fully 

open-source digital twin framework for geothermal 

systems. The open-source approach promotes 

accessibility, adaptability, and knowledge-sharing 

across the geothermal industry, making the adoption of 

digital twin technology easier, faster, and more 

impactful. 
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