

Induced Seismicity and Geothermal Energy Production in the Netherlands

Warming Up PhD's Webinar

Arjan Marelis

Promotor: Jan-Diederik van Wees^{1,2} Supervisor: Fred Beekman¹

¹ Utrecht University, ² TNO

Project description

(paper 1)

(paper 2)

(paper 3)

(paper 4)

WarmingUP

- National research project, 38 partners
- Accelerate heat transition in the Netherlands
- 25 projects over 6 themes

Theme 4: Geothermal

- Accelerate geothermal development for sustainable heating in urban environments
- 4B: Improve understanding of potential hazards for induced seismicity

Objectives

- Enhance insight in interplay between seismic hazards and geological- and operational conditions
- Develop model capabilities for field-scale evaluation of seismic hazards
- Middenmeer case study, Delft Aardwarmte Project
- Optimization of safe operational window

National compilation for subsurface parametrisation

- www.nlog.nl, www.dinoloket.nl
- thermogis.nl

Prediction of subsurface stress response

Modelling approach and workflow:

- Linear elasticity in isotropic layered medium
- Linear thermo-elastic strain: $\varepsilon_{Tz} = \Delta T \alpha \frac{(1+\nu)}{(1-\nu)}$
- Poro-elastic strain: $\varepsilon_{Pz} = \Delta P \frac{(1-\nu-2\nu^2)}{(1-\nu)E}$

From van Wees et al., 2019.

MACRIS stress calculation on faults

$$\Delta V = (\varepsilon_{Tz} + \varepsilon_{Pz}) dV$$
$$\Delta \sigma_{ij} = \lambda \varepsilon_{kk} \delta_{ij} + 2G \varepsilon_{ij} - 3K \alpha \Delta T \delta_{ij}$$

Coupled reservoir flow and thermal simulation (OPM)

Uniaxial stress calculation for layered medium

$$\Delta \sigma_v' = -\Delta P$$

$$\Delta \sigma'_{hH} = \Delta \sigma'_{Hh} = (\varepsilon_{Tz} + \varepsilon_{Pz}) \frac{E}{(1+\nu)} - \Delta P$$

Seismic hazard assessment

Seismic hazard assessment

• Comparing the change in Coulomb stress to the initial Coulomb stress allows assessment of fault stability along the pillar

Gutenberg-Richter relationship with constant b-value; 38% is released in the largest event (van Wees et al., 2014)

$$M_L = \frac{2}{3} \log \left(\sum \Delta \sigma \frac{l^2}{\sqrt{\pi}} r_p \right) - 6.07$$

From van Wees et al., 2018.

Model description and setup

- Reservoir lifetime 50 years
- Hydrostatic pressure, geothermal gradient of 31 C/km
- 30 C injection temperature
- 500 mD high permeable reservoir zone

No fault offset

- Fault strike 0, dip 70
- 0,5D offset
- Lithostatic gradient of 22 MPa/km

Normal fault offset

Coulomb failure solution

Base case scenario

No fault offset

Normal fault offset

Stress arching effects (Wassing et al., 2021)

Reactivation status at 50 years

Reactivation status at 50 years

Seismic hazard after 50 years of production

10.000 realisations

No fault offset

No seismicity: 57,9%

0,1% M, not U:

Seismic hazard U: 42%

Seismic hazard M: 42,1%

Normal fault offset

No seismicity: 58,5%

M, not U: 8,5%

Seismic hazard U: 33%

Seismic hazard M: 41,5%

Seismic event magnitude Probability distribution

Seismic hazard after 20 years of production

i.e. when the cold-water front arrives at the fault plane

No fault offset

No seismicity: 95,4%

M, not U: 2,1%

Seismic hazard U: 2,5%

Seismic hazard M: 4,6%

Normal fault offset

No seismicity: 98,1%

M, not U: 1,6%

Seismic hazard U: 0,3%

Seismic hazard M: 1,9%

X [m]

How does this relate to the Dutch subsurface?

'Hot Sedimentary System' geothermal plays; low α and E; $\Delta T_{max} = 40~^{o}C$

No fault offset

• $M_L \sim 2.4$

Normal fault offset

- $M_{L,U} \sim 2,2$ $M_{L,M} \sim 2,5$

Conclusions of the sensitivity analysis

Modelling results show that the risk of induced seismicity is (mainly) controlled by:

- the thermo-elastic and frictional parameters, and in-situ stress conditions
- the intersection area of cold-water volume with the fault plane
- stress arching effects

Disclaimer

• The sensitivity analysis is based on a synthetic model. Model parameters are chosen arbitrarily and such that an induced event is likely to occur. Presented results are by no means directly representative of the Dutch subsurface.

Next steps

2023

- > Finalizing parameter sensitivity analysis
- > Development of new 3D modelling approach encompassing arching effect
- > Application of new modelling approach on two case studies
 - o Middenmeer agriport
 - Delft Aardwarmte Project

2024

- Extension of modelling workflow to include:
 - o Well design
 - o Determination of operational safety window
 - o Artificial intelligence concepts
- > Finalising PhD project (writing dissertation; PhD defence)

→ paper 1

→ paper 2

→ paper 3a+3b

→ paper 4

NL case study: Delft Aardwarmte Project

- DAP well location near fault(s)
- 3 doublets located in single fault block

From: https://delta.tudelft.nl

Thank you!

Back-up slides

NL case study: Delft Aardwarmte Project

- DAP well location near fault(s)
- 3 doublets located in single fault block

TU Delft campus

- DAP well location: intersection of the two seismic lines
- Note the structural deformation of the deeper subsurface, situated in the West-Netherlands Basin

Middenmeer

Activities

PhD courses:

- Reservoir Geomechanics, Python and Java
- Responsible Conduct of Research (completed)
- Start-to-Teach (completed)

Teaching assistant:

- Unconventional and Geothermal Resources
- Programming and Modelling

Conferences:

- 2021: NAC, EU Geothermal PhD Days, EGU General Assembly and GeoMod
- October 2022: European Geothermal Conference, poster presentation
 (A sensitivity analysis of stress changes related to geothermal
 direct heat production in clastic reservoirs and potential for
 fault reactivation and seismicity)
- March 2023: NacGEO (presenting)
- April 2023 : EGU23 (presenting)
- December 2023: AGU23 (presenting)

