

Agenda

- 14:00 Quick intro round
- 14:05 Introduction Theme 4 for realisation of geothermal
- 14:20 Q&A 'Can results be used and how?'
- 14:35 Pitch integration in heat network
- 14:40 Discussion
- 14:55 Wrap-up

Thema 4: geothermie in de gebouwde omgeving

WARMING UP

Geothermal heat as source in an urban heat networks

- Characterisation
- Realization
- Seismicity
- Optimization of design and operations

Realization of geothermal

- What developments/knowledge is required to enable geothermal heat as a source in an urban heat network (from the point of view of the geothermal source)?
- What is different than in 'traditional' geothermal?
- What role can shallow geothermal play (500-1500 m depth) and how can it be produced?

Topics

WARMING UP

Shallow geothermal (500-1500 m)

WARMING UP

- Sand/fines can be produced at too high rates from poorly consolidated formations
- Limiting rate is not generally feasible
- Literature study into other solutions

→ Continuation in proposal WarmingUP GOO

Well designs for shallow reservoirs

Add shallow depth (< ~800 m), the distance between 'traditional' deviated wells is insufficient.

Cold water reaching the production well early

Well designs for shallow reservoirs

140 m PI=11.6 m³/hr/bar

750 m PI=16.3 m³/hr/bar

	Net present value	Internal rate of return
	[€]	[%]
Design 1: Vertical well	-2,104	-7%
Design 2: Inclined well	-159	7%
Design 3: Horizontal well - 850m	-552	5%
Design 4: Horizontal well - 1250m	-196	7%
Design 5: Horizontal well - perpendicular	834	12%

WARMINGUP

Optimal operational decisions

WARMING UP

Driven by variable heat demand

Several operational challenges, planned/unplanned maintenance

Support operators with operational decisions

Optimal operational decisions

WARMINGUP

Optimal operational decisions What was developed?

WARMING UP

Optimal operational decisions - Vision

WARMING UP

 Towards an intelligent decision support framework

• Design and operation

Automating workflows

WARMINGUP

How can the results be applied?

Integration in heat networks

• How to handle the high **variability** (*daily,* seasonal) in urban heat demand,

.... considering:

- Security of heat-supply
- Cost (constant production)
- Emissions
- Possible systems
 - Only geothermal, following demand?
 - Geothermal + gas heater
 - Geothermal + HTO
 - Geothermal + HTO + gas heater

10k households, space heating only Geo power = average heat demand

Integration in heat networks

• Geothermal (constant) + HTO + gas heater

• Small Geo & HTO: ~43 €/MWh 70 kg CO₂/MWh

• Large Geo & HTO: ~51 €/MWh 35 kg CO₂/MWh

→ CO₂ emission reduction: ~200 €/ton CO₂

• New: ~43 €/MWh 70 kg CO₂/MWh

• Existing: ~43 €/MWh 46 kg CO₂/MWh

WARMINGUP

Beneficial to make geothermal more flexible?

Impact of fluctuations of energy price?

WARMINGUP

Thank you for your contribution

Bedankt voor jullie bijdrage

