
 

1 
 

Reviewing optimization methods for design and operational control of district 
heating and cooling networks 

Version 0.5, July 15, 2020 
Dr. Ir. Richard van Leeuwen, Saxion University of Applied Sciences, Enschede, The Netherlands 

 

 
Abstract ................................................................................................................................................... 1 

1. Introduction ......................................................................................................................................... 2 

2. Conventional district heating design and control ............................................................................... 3 

3. Possible goals for an optimal District Heating controller .................................................................... 5 

4. Prioritization of goals for the development of an optimal controller ................................................. 8 

5. Introduction into optimization methods for an optimal controller .................................................. 10 

6. Review of Model Predictive Control for district heating systems ..................................................... 15 

6.1 Overview of simulation modelling methods ............................................................................... 15 

6.2 Supporting heuristics to solve MPC problems ............................................................................ 17 

6.3 Application of multi-agent system modelling for MPC of a DHS ................................................ 18 

6.4. Price based control ..................................................................................................................... 19 

6.5. Novel optimal control strategies ................................................................................................ 20 

7. Conclusions and future work ............................................................................................................. 23 

References ............................................................................................................................................. 26 

 

Abstract 
Conventional district heating systems are operated with relatively high supply temperatures from a 
central heat source which may contain a heat buffer for peak heat supply. The control system aims at 
keeping pressure and temperature between minimum and maximum bounds and in relation to this, 
the pumps and heat source are controlled. The control system is based on feedback control 
principles in which set points are used and control actions are triggered by deviations from set 
points. Due to the requirements of higher efficiency, lower supply temperatures and the integration 
of multiple, renewable sources and decentral buffers, finding optimal control schemes to achieve the 
lowest possible operational costs becomes difficult if not impossible with conventional control 
methods. Set points have to be defined in time by using the "smartness" of operators who oversee 
the operation. However, there are optimization methods available which can support or overtake 
this complex task from humans. For the development of an optimal control system, the highest 
priority should be given to operational cost minimization which can be achieved by aiming for lowest 
possible supply temperatures, preventing peak heat demands and optimal production scheduling of 
central or decentral heat sources and buffers. In this report, different classes of optimization 
problems are identified and suitable control methods are investigated from literature. Also, by 
combining past and recent insights, guidelines are given for development of a model predictive 
controller for district heating networks and future work is identified. 
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1. Introduction 
District heating is one of the promising ways in the Netherlands to integrate renewable energy 
sources for heating buildings. Design and control of conventional high temperature district heating 
systems is well known and the basic design and control principles are also used for modern, low 
temperature systems. However, the introduction of multiple central or decentral heat sources, 
decentral heat storage, peak shaving strategies and optimal temperatures in relation to available 
heat sources, appears to challenge conventional design and control practices. 

The Warming Up project aims to develop methods, frameworks and software which enables optimal 
design and control of modern district heating systems which have a better performance and allow for 
a better integration of renewables than conventional systems. The project consists of several project 
themes of which theme 1 deals with this development. For this theme the projects starts with 
investigations such as an inventory of stakeholder requirements and a literature review on 
optimization methods as a starting point for the developments. The purpose of this report is to 
review literature in order to find recent insights and methods which can be used for optimal design 
and control methods of district heating systems. The report has a focus on control methods but 
investigations on modelling of district heating networks are also relevant for the design of networks. 

The problem statement for this investigation is: what relevant methods and experiences are found in 
literature for optimal design and control of district heating systems? 

The problem statement is investigated by the following research questions: 

1. how is a conventional district heating system designed and which control methods and 
targets are used? chapter 2. 

2. what is "optimal" control of a district heating system and which goals are achieved? chapter 
3.  

3. which control optimization goals have the highest priority and through which physical 
mechanisms (control variables) are these goals achieved? chapter 4. 

4. what is a suitable, general optimization framework for district heating systems? chapter 5. 
5. which costs should be included into the optimization objective? chapter 5. 
6. how can we group or structure the different optimization problems for design and 

operational control of district heating networks? chapter 5. 
7. which methods are commonly used to solve energy system and district heating system 

optimization problems? chapter 5. 
8. what is the general architecture of model predictive control for energy systems? chapter 6. 
9. which simulation modelling methods are used for making model predictions? chapter 6. 
10. how can heuristics support efficient solving of optimization problems? chapter 6. 
11. what is multi-agent modelling and why is it an important method for optimal control of 

district heating systems? chapter 6. 
12. what is price based control and why is it relevant for optimal control of district heating 

systems? chapter 6. 
13. what relevant experiences with optimal control of energy systems are out there and what 

can we learn from them for the development of an optimal controller for district heating 
systems? chapter 6. 

14. what are the most important challenges for developing an optimal control method for 
district heating systems? chapter 6. 
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The report is structured according to these research questions and Chapters indicated. The report 
ends with conclusions and future work in Chapter 7. 

2. Conventional district heating design and control 
A District Heating system (DHS) consists of one or more heat production units, a primary distribution 
network and secondary distribution network, see Figure 1. 
 

 
 

Figure 1: schematic overview of a District Heating system [1] 
 
The secondary network may be a house or building heating system. The heating substation connects 
the home or building to the primary network. In larger networks, the network may be split into a 
primary network which supplies several secondary networks to which houses and buildings are 
connected. A heating substation between the primary and secondary network is then usually a 
building within a neighborhood. Each house or building has its own substation or connection to the 
secondary network. In such larger networks, the primary network usually has a higher temperature 
and water pressure than the secondary network, but there are exceptions to this, e.g. the backbone 
solution of Hengelo where the primary network is a low temperature, waste heat network and the 
secondary networks are high temperature networks. The substations contain a heat pump to raise 
the temperature. 
 
Several control “layers” are present in any DHS: 

• Control of the heat sources. The control is done by monitoring of the heating load of the 
DHS which is determined from the flow and both the approach and return temperatures. The 
control of the heat sources includes control of the frequency controlled pumps. 

• Hydraulic control of the primary and secondary network. When the heating load increases, 
the pressure difference between the approach and return line increases and this should be 
compensated to maintain hydraulic pressure and flow balance. The control is done by 
differential pressure controllers between the approach and return line. The pump frequency 
control is an integrated part of the pressure control: more heating load results in wider 
opening of the differential pressure control valves and higher pump frequencies. 
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• Control of the substations. If the substation is the connection of a house or building, then 
the flow and pressure are controlled by a building thermostat which is connected to the 
substation. This opens or closes the main valve of water from the DHS which controls the 
heat input towards the building heating system. If there is a demand for domestic hot water, 
then the flow from the DHS is controlled by a second valve which controls flow towards a 
heat exchanger which is usually part of the substation. If the substation is an intermediate 
station between a primary and secondary network then the controller at the substation 
controls the flow and pressure of the secondary network in a similar way as the controller of 
the heat sources for the primary network. 

• Building temperature control. Behind the substation, the temperature within a building may 
involve a single thermostat for the entire building, but also a more complex system of 
individual thermostats for each room in a building which control the valve to each radiator. 

 
A conventional control system for DHS is operated in such a way that the system stays within certain 
bounds or operational goals (refer to Figure 2): 

• Central maximum supply temperature control. The supply temperature is controlled to a 
certain setpoint value which may be weather dependent (higher at lower ambient 
temperatures). 

• Local minimum supply temperature control. The DHS has to guarantee that the building at 
the coldest spot of the network (usually the building at the end of the network) receives 
sufficient heat with a certain minimum temperature. 

• Central and local maximum pressure control. The pressure in any part of a DHS should not 
exceed a certain maximum pressure. This can be an issue in a DHS in areas with large height 
differences. 

• Central and local minimum pressure difference control. The pressure difference in any part 
of the DHS between supply and return pipes should not be lower than a certain safe 
minimum value above the water vapour pressure. This control aspect is more problematic 
for larger networks and high heating loads. 

 
Figure 2: Operational modes for DHS control systems [2] 
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3. Possible goals for an optimal District Heating controller 
Conventional control methods for a DHS are proven to reach operational robustness. However, the 
resulting performance of a DHS is not always optimal and may be improved further. In this chapter 
we explore targets to improve the performance of a DHS and some specific challenges which are 
hard to match with conventional control methods. 
 
Based on an inventory involving multiple stakeholders coming from Dutch district heating companies, 
the following important performance aspects were determined which are difficult to accomplish by 
conventional control methods and therefore require other control methods: 
 

a. Reduce network heat loss by lower supply temperatures. It is still common in many DHS to 
supply a constant high temperature throughout the year, e.g. 80°C. However, at times of low 
heating loads, the supply temperature could be much lower and this would decrease heat 
losses to the environment. This is often not done due to the risk of pipe fatigue resulting 
from heat stress and due to the more complex control in relation to ambient temperatures 
which requires additional monitoring and changes in the control system. Theoretically, a DHS 
could be operated with supply temperatures as low as 55°C which is the lowest possible 
temperature for safe domestic hot water supply. When even lower temperatures are 
considered, additional heating is required at each house or building for domestic hot water. 
Low supply temperatures are beneficial for efficient operation of renewable heat sources 
(e.g. solar thermal energy, heat pumps), see Figure 3. 

 
Figure 3: DHS generations [5] 
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b. Reduce network heat loss by lower return temperatures. Besides lowering the supply 

temperature, it is equally important to reach lower return temperatures. This is beneficial for 
the efficient operation of renewable heat sources. However, lower return temperatures are 
achieved by optimising the flow in the DHS and by improving building heating systems. Both 
are complex tasks to achieve and require additional monitoring and building system changes. 

c. Reduce pump losses by increasing the difference between supply and return temperatures. 
In order to supply as much heat as possible with a minimum required pumping energy, the 
difference between supply and return temperatures should be as large as possible. 

d. Allow for distributed or sectional DHS control. In a conventional DHS, temperature and flow 
are controlled for the entire network. It may be beneficial to make partitions within a DHS 
and to apply distributed control to each partition. If there is no heat demand in one partition, 
the flow may be controlled to a low value or even stopped within the entire partition, while 
the rest of the DHS maintains a certain flow. This control strategy may save a lot of pumping 
energy and heating energy. 

e. Prevent heat demand peaks. If peak loads can be avoided, high pumping losses can be 
avoided and sustainable heat sources can be used more efficiently. A side effect of lower 
peak loads is that the pipe diameters of a heat network can be smaller. Avoiding peak 
demand is also called “peak shaving” or “demandside management”. Both terms come from 
electrical smart grid literature and involve influencing the demand at the house level. 

f. Optimize deployment of sustainable heat sources and heat storage. The control is situated 
at the heat sources and is aimed at operation with the lowest possible costs and the highest 
possible efficiency. In Figure 4, operation of multiple heat sources in a DHS is shown for a 
case study. 

 

 
Figure 4: operation of multiple heat sources in a DHS [3]. 

 
g. Facilitate system integration of a DHS. This involves sector coupling e.g. by power to heat 

and may involve using the DHS as load balancing electricity consumer for an electricity grid 
with multiple sustainable sources. A modelling scheme for such a system is shown in Figure 
5. In this, an electricity grid is shown with sustainable sources on the left, as well as heat 
sources connected to a DHS with demand on the right. 
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Figure 5: modelling scheme smart energy grid [6] 

 
h. Facilitate multiple decentral heat sources in one DHS. Figure 6 shows a DHS with two heat 

sources placed far from each other within the primary network. The flow direction in each 
section of the primary network may depend on different states of operation of the heat 
sources and pumps within the network are controlled accordingly. 

 
The concept of Figure 6 may be taken further towards full scale Third Part Access (TPA), which is 
characterized as follows: 

• multiple sustainable centralized and decentralized sources, 
• buildings can be operated either as heat source or sink in different time domains, 
• bi-directional energy flows are possible and require appropriate heat metering techniques. 

 

 
Figure 6: DHS with two decentral heat sources [4]. 
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4. Prioritization of goals for the development of an optimal controller 
In the previous chapter we developed a "wish list" of goals for optimal control of a DHS. Based on 
this, we develop a table in this chapter which evaluates the options on potential application, control 
goals and methods to achieve this. We conclude with opinions found in literature about the ranking 
that is made in the table. 
 
In Table 1, the goals presented in Chapter 3 are given a number and the author estimated the 
potential and priority for application within optimal control methods. In the last column, the priority 
for each option is estimated based on the potential (high to low) and expected benefits (high to low) 
due to more optimal operation of the DHS. 
 
To find more evidence about the prioritization shown in Table 1, stakeholders can be interviewed or 
evidence can be found in literature. In other parts of the project, the interviews with stakeholders 
are taken care of. We now provide further evidence found in literature. In [7] the following 
challenges for a future DHS are identified: 

• Supply low temperature district heating to existing buildings, table nr. 1, 5. 
• A DHS with low grid losses, nr. 1, 5. 
• Integration of renewable heat sources and low temperature sources, nr. 5, 6, 8. 
• Integrate a DHS as part of smart energy systems (sector coupling, power to heat), nr. 7. 
• Suitable planning, cost and motivation structures in relation to operation and strategic 

investments (all options) 
 
In [8] the following operational challenges for a DHS are addressed: 

• Reducing heat loss costs and pumping costs, table nr. 1, 2, 3. 
• Operational strategy and Priority scheduling of multiple renewable heat sources within a DHS 

network, nr. 5, 6, 8. 
• Control strategies based on accurate load and heat supply predictions, nr. 1, 5, 6, 8. 
• Integrate a DHS as part of smart energy systems (sector coupling, power to heat, distributed 

heat sources), nr. 7, 8. 
 
From this literature survey, an additional objective for optimization during the design phase of a DHS 
network is identified as: determine the optimal topology of a DHS. The optimum is determined by 
minimum investment costs and lowest grid losses (heat and pumping losses). 
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Nr. Overall 
target 

Mechanism Efficiency 
measure 

(Chapter 3) 

Control goals Potential for optimal control methods Applicability 
priority 

1 Minimize 
operational 
costs 

Reduction of 
network heat 
losses resulting in 
reduction of 
required heat. 

Lower supply 
temperatures 

Minimize supply 
temperatures in 
relation to 
heating loads. 

High. 
There are many examples in literature where MPC with a first order model or 
neural network model is used to predict loads in relation to weather forecasts 
and optimal supply temperatures are determined in relation to the predicted 
loads, taking a time constant for the network into account.  

High 

2 Lower return 
temperatures 

Minimize return 
temperatures. 

Low. 
This is achieved by: 
(a) network flow control which involves pump control and substation valve 
control: flow should be restricted as much as possible. This is already the 
purpose of conventional control. 
(b) optimization of building installations: radiator flow optimization, larger heat 
exchange surfaces. On the network side, this cannot be influenced. 

Low 

3 Reduce required 
pumping energy 
by reducing flow 
due to largest 
possible 
temperature 
difference. 

Increasing the 
difference 
between supply 
and return 
temperatures 

Minimize 
pumping energy. 

Medium. 
Pump frequencies are conventionally often controlled by pressure difference. It 
is more optimal to control the flow based on temperature difference, taking a 
safe minimum pressure difference as constraint.  
However, the return temperature depends also on the substations and building 
installations. 

Low 

4 Create most 
optimal flow and 
temperature 
conditions for 
parts of the 
network. This 
may reduce 
network heat 
losses and 
required 
pumping energy. 
 
Choose optimal 
co-operation of 
heat sources. 

Splitting a larger 
DHS into 
seperately 
controllable 
zones. 

Minimize supply 
and return 
temperatures, 
Minimize 
pumping energy, 
Minimize heat 
production, 
Minimize costs 
of heat sources 
(central or 
distributed) 

High. 
Control of zones (or secondary networks) within a larger DH network needs to 
be done at the substation level where the zone is connected to the primary 
network. For each zone, the primary network is the main heat source. The 
substation may also include an additional (distributed) heat source for the zone 
specifically, e.g. a heat pump and thermal storage. There is an interaction 
between the load within the zone and the control of the central and distributed 
heat source. Flow and temperature of each zone may be controlled in an optimal 
way, similar as mentioned under item 1 to 3. 

Low 

5 Avoid 
deployment of 
peak boilers 
(fossil fuel 
consumption), 
reduce peak 
capacity of heat 
sources and 
network. 

Preventing heat 
demand peaks 

Minimize peak 
heating load, 
Optimize control 
of thermal 
storage. 

High. 
Minimizing peak heating load requires demandside management or load shifting 
at consumer level. Building thermal inertia or consumer thermal storage may 
provide flexibility. 
Optimal control of thermal storage is possible at heat source or may involve 
several distributed thermal storages. 

High 

6 Avoid using fossil 
fuel, optimize 
costs and 
(contractual) 
availability of 
multiple heat 
sources, optimize 
use of thermal 
storage. 

Optimal control 
of central 
sustainable heat 
sources and 
thermal 
storages. 

Minimize costs 
of heat sources 
and thermal 
storages. 

High. 
Controlling multiple heat sources and thermal storage have a relation with 
thermal load predictions of the network. This is a straightforward MPC problem 
for simple networks with a central heat source location. However, if multiple 
heat sources are distributed and multiple flow directions are possible within the 
network, this is much more complex (refer to 8). 

High 

7 Make use of low 
energy tariffs 
(electricity) 
within a smart 
energy system 
(power to heat). 

System 
integration of a 
DHS 

Minize costs of 
heat sources and 
thermal 
storages. 

High. 
A DHS may be use for peak shaving and solving congestion problems of 
electricity grids. The optimization problem is however complex as it involves 
multiple cost data and predictions, besides load predictions. Control of the DHS 
heat sources should be included into smart grid control of the integrated energy 
system. 

Medium 

8 Avoid using fossil 
fuel, optimize 
costs and 
(contractual) 
availability of 
multiple heat 
sources, optimize 
use of thermal 
storage. 

Optimal control 
of multiple 
distributed sus-
tainable heat 
sources and 
thermal 
storages. 

Minimize costs 
of heat sources 
and thermal 
storages. 

High. 
Controlling multiple heat sources and thermal storage have a relation with 
thermal load predictions of the network. This is a straightforward MPC problem 
for simple networks with a central heat source location (refer to 6). However, in 
case of TPA, multiple heat sources are distributed and multiple flow directions 
are possible within the network, this is much more complex. 

High 

Table 1: overview of optimization goals for DHS 
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5. Introduction into optimization methods for an optimal controller 
In the previous Chapter we explore goals and estimated applicability of more optimal control of a 
DHS. In this Chapter we investigate common methods used from literature to achieve this. We also 
develop a classification for the different design and control optimization problems. 
 
To develop a set of mathematical rules for optimization, it is not obvious that we can work with just a 
single objective function to steer the different goals in the right objective. In energy optimization, it 
is common to use cost functions as objective. Cost functions may contain CAPEX for the investments 
involved (including peak generation capacity in relation to demand) and OPEX (including costs for 
operating different heat sources, heat losses in relation to temperature and pumping energy costs). 
In most DHS optimization problems, the framework shown in Figure 7 is applied. 
 

 
Figure 7: Framework for district level optimization [9] 

 
Possible cost functions are shown in the middle block. Total cost of operation is usually part of the 
objective, the cost ingredients are shown in Figure 8. 
 
It often requires some “art” to develop an objective function which is able to steer towards other 
goals, e.g. increase sustainability. This can be achieved for instance by including a penalty on CO2 
emissions from fossil fuel heat sources. In general, the relative importance of objective terms within 
an objective (cost) function may be scaled with a weighing factor. However, the more we use such 
scaling methods, the less the objective will have a practical significance. The functions are then just 
used to steer the system towards a desired operation. If an objective is to signify real costs or profits 
of a DHS, then no scaling or weighing factors are used for cost or profit terms and the outcome may 
be such that e.g. fossil fuel heat sources will be used more than desired, due to their low operational 
costs and the present day low penalties on CO2 emissions. In Table 2, an overview is given of 
objective functions used in recent studies on optimization of DHS. 
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Figure 8: total operation cost of a DHS [13] 

 
The output of optimization studies which are based on the framework of Figure 7 are shown in the 
right block. To understand the difficulty of solving optimization problems, it helps to define “classes” 
of problems. The first class is defined by energy balance equations of the DHS and aims at 
determining capacity and optimal scheduling in time of the heat sources, thermal storages, supply 
and return temperatures and mass flow rates of primary and secondary circuits. An example is given 
in [13]. The second class is defined by topographic relations and aims at determining the optimal 
layout of a network, which is a spatial optimization problem and therefore an entirely different class 
than the first class. An example is given in [4]. 

 
It is difficult to optimize both output classes within one optimization problem, especially for 
complicated networks. This is because of the need for elaborate constraints for each class:  

• For the first class, to govern the relation between heat demand and heat production by 
multiple sources, and to govern charging and discharging of energy storage, logic control 
rules and boundaries are required as constraints.  

• For the second class, to govern flow paths within a network, logic relations need to be 
defined in order to rule out impossible network layouts and flow directions. An overview of 
the possible types of constraints in energy optimization is given in Figure 9. 
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Figure 9: classification of constraints in district energy optimization problems [9] 

 
During mathematical optimization, a system of equations is repeatedly solved, changing the variables 
which need to be optimized in a computational efficient way and storing the best solutions for the 
objective function until the solution does not improve anymore. The more “logic” relations 
(constraints) that are predefined between states for the inputs, variables and outputs, the less 
variables that need to be considered during the optimization and the faster the problem will be 
solved. The more variables a problem contains, the more difficult it is to solve. It is therefore more 
difficult to solve multiple class problems within one optimization problem. It can be concluded that 
each class of problems should be solved on its own. 
 
The first class can be used during the design phase to estimate asset capacities, but also for 
operational control, e.g. to control heat sources, buffering and network states. It could also include 
distributed flexibility options within the network, e.g. demand response actions at the customer level 
in order to minimize peak heat demand. As this introduces far more variables to solve, we signify this 
as a third class of DHS optimization problems. An example is given in [14] which uses multi-agents at 
building level to control the heat supply to each building. This class will quickly involve large numbers 
of variables in time to solve and this may dramatically increase the time to solve the problem. 
Computational efficiency measures like “moving time horizon” are required to solve the problem 
within acceptable time. 
 
The second class is often used during the design phase to determine the optimal routing and sizing of 
pipes within the network. It is also used for operational control of flow direction within more 
complex networks which have a ring structure and include multiple heat sources along the network 
(Third Party Access), refer to Figure 6. The purpose is then to control the distributed heat sources 
and flow directions within the network in time. This kind of complex operational network control can 
be seen as a class on its own and we introduce this as the fourth class of DHS optimization problems. 
An example is given in [15]. The paper shows the difficult problem of controlling local flow and 
temperature of DH networks when a large number of prosumers are involved. 
 
To summarize, we introduce the following classes of optimization problems in relation to DHS: 
 

First class – energy balance of tree structured networks: 
- Design phase: capacities of heat sources and energy storages (static, dynamic) 
- Operational phase: scheduling in time of heat sources, i.e. centralized heat sources or 

distributed heat sources (dynamic) 
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- Operational phase: scheduling of charging and discharging in central or distributed energy 
storages (dynamic) 

- Operational phase: scheduling of primary and secondary mass flows, supply and return 
temperatures (dynamic) 

 
Second class – optimal network layout: 
- Design phase: network pipe diameters and section lengths (static) 
- Design phase: optimal network layout (static) 
 
Third class – operational control and demandside management of tree structured networks: 
- Operational phase: scheduling of flexible loads at customer level (dynamic) 
- Operational phase: peak or load shifting flexibility options along the network or at customer 

level (dynamic) 
 
Fourth class – operational control of flow and distributed prosumers in complex networks: 
- Design phase: capacities of heat sources and energy storages (static, dynamic) 
- Operational phase: scheduling in time of distributed heat sources and energy storages 

(dynamic) 
- Operational phase: scheduling of pipe section flow directions in time (dynamic) 
- Operational phase: scheduling of primary and secondary mass flows, supply and return 

temperatures (dynamic) 
 
Table 2 shows that the most commonly used optimization method is linear programming, in most 
cases of Mixed Integer type (MILP). It is common practice to formulate objective functions and 
constraints as linear relations, although this violates practical non-linear behaviour. However, solving 
non-linear, dynamic optimization problems with multiple control variables is computationally very 
difficult. Succesful methods include mixed Monte Carlo with Pareto front analysis or ant-colony 
analysis, although both methods require much computational time which is problematic for the 
purpose of online, operational control. 
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Table 2: summary of optimization methods in some recent studies [9] 

 



 

15 
 

6. Review of Model Predictive Control for district heating systems 
Optimal control of energy systems is studied and developed for more than 30 years. Applications are 
widespread in the smart grid domain and include control of multi-energy generation, energy storage 
and demand response. In this chapter we investigate the application of Model Predictive Control 
(MPC) in energy networks. The general MPC framework is shown in Figure 10 and this applies both 
for network design problems (class 1 and 3) and for operational control problems (class 2 and 4). 
 

 
Figure 10: framework of model predictive control for DHS [16] 

 
The bottom block contains the optimization method which uses a system model to generate 
predictions. The system model uses measurements and estimated control actions as input. By 
repeating the calculations, the objective function is optimized and optimal values for the control 
variables are found as output and this is postprocessed into control actions for the thermal network.  
 

6.1 Overview of simulation modelling methods 
In the previous Chapter we discussed problem classes and optimization methods, in this Section we 
investigate more closely the role of the predictive model. From system modelling theory, we 
distinguish three types of modelling methods [17]: 
 

1. System Dynamics modelling 
This describes a system with mathematical equations, often in the form of differential 
equations that describe system state changes in time. A system model also contains feedback 
loops between inputs and outputs. The mathematical set of equations represents physical 
behaviour of the system. A white box model contains equations and parameters which are 
based on a physical model of the system. A good white box model correlates (nearly) exact 
with experimental data. On the other side, a black box model contains equations and 
parameters which are simply chosen to best represent experimental data, without 
considering a physical model of the system. Model parameters are optimized to match 
experimental data and parameters often need to be updated with recent data. In energy 
system optimization, linear ARMAX models and neural network models are often used. 
In between, a grey box model consists of mathematical equations and parameters similar as 
white box models but the equations are based on a simplified physical model of a more 
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complex system. Model parameters are dealt with in a similar way as black box model: they 
are optimized to match experimental data. The optimization of parameters can be done with 
several techniques: for models with a few parameters, least square difference minimization 
is sufficient. For models with many parameters, a machine learning algorithm is more 
succesful. System dynamics modelling is the most applied method for DHS system simulation 
for design and control purposes. However, it has its limitations when we consider 
decentralized or distributed control problems as the system model then becomes very 
complex and computationally expensive due to the relations between all of the nodes within 
the system model. 

2. Discrete Event modelling 
This method is developed to simulate events and processes, e.g. a factory which contains 
multiple production processes and for which we want to evaluate optimal process routes, 
waiting times and schedules for delivery of material and labour intensity. Typically, a model 
contains processes which are connected to other process or pools and a process is a discrete 
event with a starting time and duration. A DHS can be modelled with this approach but this is 
somewhat artificial because in a DHS system, duration of for instance heat production events 
is not fixed but determined by demand. Hence, a discrete event model of a DHS cannot 
function without system dynamics models. 

3. Agent Based modelling 
Application of agent based modelling started around the year 2000 and is therefore quite a 
new approach. It is made possible by increased CPU-power and object oriented programming 
tools. The use of agent based modelling for DHS becomes obvious when we consider Figure 
11 which illustrates the difference between centralized, decentralized and distrubuted 
control problems. 

 
Figure 11: network classes for energy systems 

 
A simple DHS contains a central heat source from which the network expands in a tree 
structure. The nodes at each branch represent aggregated demand for the branch. This type 
of system is relatively easy to model with a system dynamics model, e.g. by equations for the 
heat source, energy loss equations for the network and aggregated demand equations for 
the nodes. 
However, a decentralized DHS contains more branches and may also contain decentralized 
heat storages and heat sources. In that case there are many relations possible between the 
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nodes. When system dynamics modelling is used, the system of equations and all the 
relations become complex to manage by the modeller. Also, during the design phase, when 
the design changes, the whole model needs to be changed as well, which is tedious work. In 
an agent based model, a system component is an object or an agent, for instance a heat 
source, a demand node, a household, a buffer. If necessary, pipe sections can also be 
modelled as agents. Each agent is part of a certain object class and may contain any kind of 
relation with other agents or may even contain a system dynamic model which e.g. describes 
heat demand. It may also be a bidding agent which is able to place bids on an energy market. 
This is explained later in this Section under price based control. The versatility of agents and 
the computational resemblance with objects, enables implementation of agents in a 
graphical modelling environment, for instance an overlay of a GIS map of a DHS. This makes if 
far easier to rebuild the model when the design of the DHS is changed. 
The same arguments apply for distributed networks. Such a network structure is not 
common in DHS. But if we consider a district with many households and a DHS which is 
operated by price based control, the transactions and communication between households 
resembles a distributed network, but this is an entirely different flow than the flow of heat. 
For these kind of transactions, blockchain is a novel administrative system and this may be 
coupled to the DHS control system. 

 

6.2 Supporting heuristics to solve MPC problems 
Heuristics may be used either to limit the search space for solving the optimization problem in the 
form of cleverly constructed constraints, or to find faster routes for the optimization in the form of 
preselected solutions, or to limit the amount of required optimization problems within a time 
interval because we have some knowledge about optimality of the solution space. An example of the 
latter is a heuristic method called EDF (Earliest Deadline First) and this illustrates the power of using 
heuristics.  
In [10] a group of decentral heat pumps and a single power source are scheduled in time by using 
EDF and results are compared with MILP (Mixed Integer Linear Programming). The heat pumps may 
also signify home district heating substations and the power source may be a heat source.  
It was seen on the MILP solution that it is very hard to limit the amount of state changes of the heat 
pumps and the central power source in time. A lot of additional constraints are necessary to avoid 
frequent state changes and this has negative consequences for computational time. The EDF 
algorithm does a far better job by keeping the present state of each heat pump and the power 
source as long as possible, until a minimum or maximum boundary is violated and then the 
optimization problem is solved again. The result is that there are far less state changes (which is 
favorable for service life of equipment) but also less optimization problems in time to solve. So this 
also significantly reduces computational time. It is demonstrated that by making an adequate choice 
for the lower and upper boundaries, the quality of results, e.g. experienced thermal comfort of the 
households may be similar as the MILP solution.  
Although heuristics can lead to a much reduced computational time for solving an optimization 
problem, the difficulty is that a heuristic approach is developed for a specific problem and it is 
difficult (if not impossible) to generally formulate heuristics which can work for a variety of problems. 
As a consequence, MILP is more often used as a general method but in relation to reduction of 
complexity and scale of the problem to keep computational time within limits. 
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6.3 Application of multi-agent system modelling for MPC of a DHS 
District heating systems are physically distributed. Sensor data is collected via a distributed system. A 
relevant question is whether computation and control in relation to optimized control should be 
central or distributed. 
When data is collected on a consumer/prosumer level and when we want to control on a 
consumer/prosumer level, then this requires a distributed type of control system and optimization 
method. We then need to predict demand patterns for each household and this requires not only 
large computational power when done on a central level, but also a lot of data exchange. This is not 
practical from a computational, data science and data security perspective. 
As explained in Section 6.1 agent based modelling is the method of choice for decentral or 
distributed MPC problems. Further arguments for application of agent based modelling as part of 
MPC for a DHS are given in [11].  
 
A suitable modelling representation is shown in Figure 12.  

 
Figure 12: Multi-agent System model for a DHS [11] 

 
Consumer agents 
Within the model, agents must coordinate their activities with each other to satisfy group goals. It is 
difficult to identify group goals due to two types of conflicts. (1) Consumer agents want to maximize 
the comfort of the consumers by using as much heat from the network as the consumers demand. 
On the other hand, the producer agents want to produce as little heat as possible to reduce costs. In 
[11] this is solved by the following group goal: produce as little heat as possible while maintaining 
sufficient level of customer satisfaction.  
(2) Another conflict exists between consumer agents when there is a shortage of heat in a part of the 
network. In this situation each consumer agent wants to satisfy their consumer´s demand, which is 
impossible. The solution given in [11] is the following group goal: when there is a shortage, the 
available heat should be shared fairly between the consumers. Satisfaction of these group goals 
could be achieved by either competition or cooperation. The architecture of consumer agents is 
shown in Figure 13. 

 
Figure 13: consumer agent architecture and interaction with environment [11] 
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Redistribution agents 
These agents are responsible for a cluster of consumer agents. Their role is to be mediator between 
producer and consumer agents and to be decision maker [11]. Decisions concern restrictions upon 
consumer agents and maintaining an overall acceptable consumption rate, which is determined by 
predictions made by the consumer agents. The redistribution agents collect predictions and monitor 
the total consumption of a cluster of consumer agents. 
 
Producer agent 
This agent receives demand predictions from the redistribution agents and is responsible for the 
interaction with the control system of the heat production plant. The agent also monitors the 
actual consumption of consumer agents. This may be used to calculate the returning temperature, so 
that the producer knows in advance the temperature of the water to heat. The agent can also 
impose restrictions for consumers to reduce the cost of producing heat to cover for short 
temporary heating needs. 
 
In Figure 14 a framework for an MPC control system with an agent based model is shown. This shows 
the relation between the control system (left) which has a similar schematic as Figure 10, and 
evaluation criteria (right). This framework was developed for a biogas system involving multiple 
biogas producers and users of biogas, but the framework is more widely applicable, also for a DHS. 
 

 
Figure 14: framework for a multi-agent system support tool [12] 

 

6.4. Price based control 
The method of price based control is part of the demand side management domain. This includes  
strategies to optimize consumption patterns and to use the potential of buffers and distributed 
generation. Demandside management methodologies commonly optimize on a device level 
(consumption, production, buffering). This introduces many constraints and thus complexity. 
Decisions for each device are taken in a hierarchical way to maintain scalability. The complexity can 
be reduced by using generic functions which express preferability of different options for the device. 
These functions are called utility functions, bidding functions or cost functions [18]. Cost functions 



 

20 
 

reduce the complexity of the optimization problem to a cost optimization problem with a limited 
number of constraints. The outcome of such an optimization problem is an energy price, which in 
combination with the cost function of the devices specifies the resulting dispatch for each device. For 
this method to work, some form of market organisation needs to be in place. It is common to 
organize an auction and to develop a multi-agent system model. Within the auction strategy, 
production agents offer and consumer agents place bids for the energy price, based on their cost 
function. The bids are aggregated and the market authority agent determines a market clearing 
price. The market clearing price may be steered towards a desired optimum which has to be learned 
(and be predictable) in time. Figure 15 demonstrates how the market clearing price is determined by 
aggregated production costs and the aggregated bids (price that consumers are willing to pay) in 
relation to the amount of energy.  

 
Figure 15: price function for an auction based strategy [18] 

 
A well known concept which uses multi-agent system modelling and an auction based strategy is 
Powermatcher [19]. Each device is represented by an intelligent agent that trades on behalf of the 
consumer or producer. In this concept, a buffer can take the identity of consumer or producer. Data 
messages needed for the trading don’t contain specific, local information which protects the privacy 
of the local consumer. Powermatcher is validated in practice and is a proven method for real time 
demandside management. It is interesting to consider application of this concept to a DHS. Dutch 
research organisation TNO is working on a similar concept in that field called Heatmatcher [20]. In a 
similar fashion, Vito in Belgium is working on a smart heat controller as part of the Storm project 
[26]. 
 

6.5. Novel optimal control strategies 
In [24] a multi-agent system model of a heating network is part of a “cooperative multi-agent system 
(MAS) hierarchical model predictive control (HMPC) implementation.” The approach is summarized 
as follows (quote): “The centralized model predictive control (CMPC) problem is formulated as a 
deterministic, multi-agent system, mixed-integer quadratic programming (MIQP) optimization 
problem and is subsequently distributed based on the Optimal Exchange Problem formulation using 
the alternating direction method of multipliers (ADMM). Hybrid system modelling theory is applied 
to model the agents’ subsystems and a simplified heat energy exchange model with constant time 
delay is assumed. The latter was chosen as decoupled thermal and hydraulic equations proved to be 
non-linear in the valve positions and mass flow, iterative due to the friction factor and the Reynolds 
number, and dependent on a variable spatial sampling to accurately track the thermal propagation 
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through the network.” The method developed contains a simplified network modelling approach 
based on energy exchange between the agents to avoid non-linear equations when flow and 
temperatures would be used. By using simplified assumptions, the heat loss of the network is part of 
the modelling. The optimization problem involves minimizing the energy imbalance error for each 
consumer agent. As future work it is recommended to implement efficient solutions to deal with 
predictive modelling inaccuracies and to implement a lower level grid operation optimization 
problem to actually control valve and pump setpoints. Also application of a heuristic method is 
recommended to enable implementation on low cost computers in practice.  
 
In [11] a similar concept as Powermatcher (multi-agent based modelling and an auction based 
strategy) is proposed for decentralized control of production, buffering and consumption in a DHS. 
However, an auction based strategy like Powermatcher aims at reaching an equilibrium at a certain 
moment in time and it repeats that process at a next time interval. This is a much different strategy 
than MPC, which uses predictions of future states to determine the best possible solution for the 
present time interval. It is demontrated in [18] and [21] that methods which include predictions lead 
to more optimal solutions. But as mentioned in the previous, MPC methods have the drawback of 
complexity and limited scalability. Is it possible to combine both methods? 
 
Arguments for combining multi-agent modelling, auction based strategy and predictions are 
formulated as future work in [11]. In Section 6 we discuss that multi-agent modelling is a suitable 
method to model decentral or distributed systems. Agents can also include predictive models, for 
instance of household space heating demand and the buffering capacity of a floor heating system. 
Although it may be difficult, it does not seem to be impossible to include such model predictions 
within an auction based strategy.  
At this stage only a few comparisons are found in literature which provide evidence that a DHS 
control system that uses model predictions leads to better results than a controller which uses e.g. 
an auction based strategy without predictions. As an example, in [18] the Triana (MPC) concept is 
compared with ILP and auction based control (both originally used for real time control in the paper). 
The auction based control method used here is based on Powermatcher as described in [21]. In 
Figure 16, results from [18] are shown. The ILP+ and Auction+ results include a planning step which is 
based on model predictions with known prediction errors. From the results, the authors conclude 
that the auction strategy is able to cope better with prediction errors than the ILP strategy which was 
given a similar planning. 

 
Figure 16: resulting load duration curves for 3 control strategies [18] including planning 
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Based on these results, it is important that besides a planning step (based on model predictions), the 
results also depend on the ability of the controller to cope with prediction errors. If warming up 
proceeds to develop an MPC controller for DH networks, this ability should be taken into account. 
 
Based on Figure 16, the Triana method seems to follow an effective strategy to cope with prediction 
errors. Therefore we explain more about this control method. The strategy used is based on efficient 
algorithms which are capable to perform fast replanning during the real time control phase [27]. 
More recently, Triana is applied to different domains than smart grids, i.e. district heating or multi-
energy systems. Also, the methodology is recentely updated with the name Profile Steering [22] and 
a simulation and control tool is developed under the name Demkit [23] which has also been 
demonstrated in practice in a number of cases and implemented into real control systems using low 
cost computers. Profile Steering and the Demkit tool apply some form of multi-agent system 
modelling, although Demkit is developed in the Python programming language and uses object 
oriented programming using object classes. A typical Demkit control system hierarchy is shown in 
Figure 17, which shows the use of agents on different levels of hierarchy.

 
Figure 17: structure of controllers for profile steering methodology [25] 

 
Power production and consumption profiles are steered as a result of three steps:  

(step 1) each agent makes a prediction of energy consumption to determine priorities,  
(step 2) an optimization which leads to a planning of devices, and  
(step 3) real time control which reacts on disturbances which involves a short term correction 

on the planning. For the third step, an auction based strategy may also be used as 
explained in [18] and as demonstrated in Figure 16.  

 
Profile steering has been implemented for optimal control of a small scale DHS involving 16 houses 
[25]. The modelling scheme is shown in Figure 18 and includes a multi-energy system consisting of a 
CHP, heat buffer and decentral solar PV, batteries, flexible and fixed demand and these are modelled 
using agent based system modelling. The home agents include predictive models for space heating 
and hot water demand. Like in [24] the heat network (temperatures, flows, heat loss) is not modelled 
while this adds considerable complexity and the purpose of [25] is to find optimal control for the 
CHP, flexible electric demand and batteries. 
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Figure 18: Multi-agent system modelling schematic for the 16 house case DHS 

 
Hence, there is sufficient evidence (auction+ and profile steering, Figure 16) that a control strategy 
which contains a planning step based on model predictions (or other forecasting method) and a real 
time control step based on fast replanning, e.g. by using an auction based method and cost 
functions, leads to robust and optimal control results. Although applicability of such a control 
strategy is not investigated thoroughly for district heating networks, we assume that the results may 
even be better than for electricity grids. The argument for this is that both production and 
consumption of heat within such district heating networks varies less dynamic in time than electric 
energy within electricity grids and thus, it is easier to forecast production and consumption of heat, 
probably also with better accuracy and there is more time for a more optimal replanning during the 
real time control phase.  
Besides the challenge to develop and implement such a control strategy for district heating 
networks, another challenge is to develop an approximation method for the model of the district 
heating network itself which is used for forecasting during the planning phase. Because of the non-
linear nature of flow, pressure and temperature within the pipes and the possible complex structure 
of the network (nodes and branches), an optimal controller should use a simplified model of the 
network. 

 

7. Conclusions and future work 
Conventional district heating systems are operated with relatively high supply temperatures from a 
central heat source which may contain a heat buffer for peak heat supply. The control system aims at 
keeping pressure and temperature between minimum and maximum bounds and in relation to this, 
the pumps and heat source are controlled. The control system is based on feedback control 
principles in which setpoints are used and control actions are triggered by deviations from setpoints.  
 



 

24 
 

Due to the requirement of lower supply temperatures and the integration of multiple, renewable 
sources and decentral buffers, finding optimal control schemes to achieve the lowest possible 
operational costs becomes difficult if not impossible with conventional control methods. Setpoints 
have to be defined in time by using the "smartness" of operators who oversee the operation. 
However, there are optimization methods available which can support or overtake this complex task 
from humans. For the development of an optimal control system, the highest priority should be given 
to operational cost minimization which can be achieved by aiming for lowest possible supply 
temperatures, preventing peak heat demands and optimal production scheduling of central or 
decentral heat sources and buffers. For the design of a district heating network, priority should be 
given to topology optimization considering minimal investment costs and grid losses (heat and 
pumping losses). 
 
A suitable optimal control framework for existing and new district heating networks contains a 
forecasting method to generate inputs for a mathematical optimization problem which can be solved 
within a given period of time repeatedly and which generates outputs in the form of set points in 
time for the conventional control system layer. We identified four different classes of optimization 
problems in relation to district heating systems: 
 

First class – energy balance of tree structured networks: 
- Design phase: capacities of heat sources and energy storages (static, dynamic) 
- Operational phase: scheduling in time of heat sources, i.e. centralized heat sources or 

distributed heat sources (dynamic) 
- Operational phase: scheduling of charging and discharging in central or distributed energy 

storages (dynamic) 
- Operational phase: scheduling of primary and secondary mass flows, supply and return 

temperatures (dynamic) 
 
Second class – optimal network layout: 
- Design phase: network pipe diameters and section lengths (static) 
- Design phase: optimal network layout (static) 
 
Third class – operational control and demandside management of tree structured networks: 
- Operational phase: scheduling of flexible loads at customer level (dynamic) 
- Operational phase: peak or load shifting flexibility options along the network or at customer 

level (dynamic) 
 
Fourth class – operational control of flow and distributed prosumers in complex networks: 
- Design phase: capacities of heat sources and energy storages (static, dynamic) 
- Operational phase: scheduling in time of distributed heat sources and energy storages 

(dynamic) 
- Operational phase: scheduling of pipe section flow directions in time (dynamic) 
- Operational phase: scheduling of primary and secondary mass flows, supply and return 

temperatures (dynamic) 
 
Solving district heating optimization problems can be difficult due to the non-linear nature of the 
system model and the large amount of variables involved, depending on the complexity of the 
network. By simplification and approximation, the problem can be linear and reduced in complexity. 
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Mixed Integer Linear Programming (MILP) is used by most references in literature and problems are 
solved by common open source or commercial solvers. 
 
For operational control of heat sources, buffers and demandside management, model predictive 
control is often used. The model that is used to generate forecasts may be a system dynamics model 
when only heat sources, buffers and some network valves and pumps are to be controlled. The 
network model should then be approximated to avoid non-linearity. However, when demandside 
management is part of the control problem, or a larger number of distributed heat sources and 
buffers, a distributed modelling method like multi-agent systems model is much easier to use than a 
system dynamics model. 
 
A MILP solver is often used to generate a planning of set points as output. However, especially in 
case of a lot of variables, it is often difficult to solve the system of equations within the available 
timeframes of an online control system. Price based control based on an auction between heat 
sources and consumers or the use of other heuristics may greatly reduce computational time, but 
there may be drawbacks in terms of finding a general, and uniform method for different cases, and 
the result may be less optimal than results obtained from MILP. 
 
Recently, some of these methods have been combined and applied within the smart grid area and 
results are compared with MILP solutions and results of a controller based on an auction method 
such as Powermatcher. An example is the profile steering method of the University of Twente which 
combines forecasting methods and MILP to generate solutions for the planning phase and fast 
replanning heuristics for the real time control phase. Replanning is often required due to inaccurate 
forecasts. Replanning during the real time control phase may also be done by an auction method. 
 
Future work may consist of the following challenges identified in this report: 

• Developing a universal approximation method for complex district heating networks in order 
to generate a linear network representation (from an original, more elaborate, non-linear 
model) with a limited number of nodes and branches. 

• Automating the process of defining the model which will be used to generate forecasts from 
a more elaborate design topology model which defines the network layout, pipe lengths and 
diameters, loads, heat sources, heat buffers, etc. 

• For the planning phase, integrating a forecast model of the system (preferably based on 
multi-agent system modelling) and suitable solving method (MILP as likely candidate). 

• For the real time control phase, developing a suitable method for replanning due to 
inaccurate predictions. A price based method based on an auction seems to be a suitable 
candidate for this. Otherwise algorithms developed as part of the profile steering method 
may be evaluated as an alternative. The challenge is to develop a methodology which can 
easily be used in practice by different stakeholders to define cost functions for the heat 
suppliers and heat consumers within the network. 

• Integrating the planning phase and real time control phase into a powerful model predictive 
control framework which generates robust control set points for any type of district heating 
network. 

• Developing the backend (all of the above) and the frontend of the controller such that it can 
communicate with conventional control systems for district heating networks (Scada, Bacnet, 
etc.). 
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